Flying after pool diving FAQ

Flying after pool diving

DAN medics and researchers answer your questions about dive medicine.

I’m a dive instructor, and I occasionally have student divers who wonder if they need to follow the flying-after-diving recommendations after just being in the pool.

Flying or travel to altitude after diving is a consideration for many divers, so it is great that the question is being asked. Fortunately, a typical shallow, low-workload, pool-diving exposure would be of minimal concern, particularly when the time is split between the bottom and the surface and the cumulative total underwater time is modest. This is a great opportunity, however, to reinforce an understanding of dive tables.
You can reference the U.S. Navy Diving Manual (USN 2008) for this guidance. An actual bottom time (the time from leaving the surface to the point of direct ascent to a stop depth or the surface) of 61-88 minutes at 15 feet of seawater (fsw) would put a diver in repetitive group C (Table 9-7). C is the maximum repetitive group allowed for immediate exposure to an altitude of 8,000 feet (Table 9-6). A maximum depth of 10 fsw would require an actual bottom time of 102-158 minutes to put a diver in repetitive group C.
Any delay between exiting the water and travel to altitude would provide an additional safety buffer as the diver offgases. Conversely, deeper dive depths, high underwater workloads and/or travel to higher altitudes would require greater conservatism.
Practically speaking, a 60-minute pool session in a 10- to 12-foot-deep pool would offer little concern for typical pressurized aircraft cabin altitudes (usually 6,000-8,000 feet altitude equivalent) or unpressurized flight or driving to a similar actual altitude. Following the flying-after-diving guidelines recommended for recreational diving would not be necessary for this (or lesser) exposure.
For completeness, the flying-after-diving guidelines for recreational diving call for a minimum 12-hour surface interval (SI) after single no-decompression dives, an 18-hour SI after multiple dives per day or multiple consecutive days of diving, and a “substantially longer” than 18-hour SI after decompression dives (Sheffield and Vann 2004). The “substantially longer” text was used to acknowledge the fact that we did not have sufficient data for precise recommendations, but it is a common rule of thumb that a 24-hour SI is desirable for decompression dives.
The DAN® flying-after-diving guidelines are applied to the altitude range of 2,000-8,000 feet. Exposures to altitudes below this range are ignored, and exposures to greater altitudes are not recommended after diving until all excess inert gas is eliminated. In comparison, the U.S. Navy uses 1,000 feet as the threshold for altitude exposure. An interesting fact is that the U.S. Navy tables rely on most of the same data used to generate the DAN guidelines. The specific guidance for different exposure profiles is primarily based on mathematical manipulation of the same data, not additional experimental data.
— Neal W. Pollock, Ph.D.
References
Sheffield P, Vann RD, eds. DAN Flying After Diving Workshop Proceedings. Durham, NC: Divers Alert Network, 2004.
U.S. Navy Diving Manual, Volume 2, Revision 6. NAVSEA 0910-LP-106-0957. Washington, DC: Naval Sea Systems Command, 2008: Chapter 9.

Categories

 2018 (49)
 2016 (119)
After anaesthesia Air Quality Altitude sickness Annual renewal Apnea Arthroscopic surgery Bag valve mask Bandaids Barbell back squat Bench press Boyle's Law Boyle\'s Law Boyle\\\'s Law Boyle\\\\\\\'s Law Boyle\\\\\\\\\\\\\\\'s Law Breath hold Breath-hold Buoyancy Burnshield CGASA CO2 Camera settings Cancer Remission Cancer Cape Town Dive Festival Carbon dioxide Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Coastalexcursion Cold Water Cold care Cold Conservation Contaminants Corals DAN Profile DAN Researchers DAN medics DAN report DCI DCS DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Decompression Illness Decompression Sickness Decompression illsnes Dive Instruction Dive Instructor Dive accidents Dive health Dive medicines Dive medicine Dive safety Dive staff Diveleaders Divers Alert Diving career Diving emergencies Diving injuries Diving suspended Diving Dr Rob Schneider EAP Ear pressure Ears injuries Emergency plans Environmental impact Equipment care Exercise Eye injuries FAQ Fatigue First Aid Equipment First Aid kits Fish Fitness Francois Burman Free diving Freediver Gas laws Gastric bypass Gordon Hiles HELP Health practitioner High temperatures Hot Hypothermia Indian Ocean Inert gas Instructors International travel Irritation Kids scubadiver Labour laws Legislation Leukemis Liability Risks Maintenance Medical Q Medical questionaire Medical statement Middle ear pressure Military front press Mycobacterium marinum Nitrox Non-rebreather Mask Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean pollution Orbital implants Oronasal mask Oxygen Cylinder Oxygen Units Oxygen deicit Oxygen ears Oxygen equipment Oxygen masks Part 3 Plastic Pool Diving Radio communications Rashes Report incidents Rescue training Resume diving SABS 019 Safety Save our seas Science Scuba Injury Scuba children Scuba dive Scuba health Scubalearners Skin Bends Skin outbreak Skin rash Snorkeling Sodwana Bay Squeezes Supplemental oxygen Surgeries Surgery The truth Thermal Notions Tides Travel tips Tweezers Underwater photographer Underwater pho Valsalva manoeuvers Vasvagal Syncope White balance Winter Wreck dive Youth diver abrasion air-cushioned alert diver altitude antibiotics antiseptics bandages bent-over barbell rows breathing air checklist child clearances closed circuit scuba currents dead lift decongestants dehydration dive injuries dive medicing dive ready child diver rescue dive diving attraction doctors domestic travel dri-suits dry mucous membranes dry ear spaces electroytes emergency action plans emergency assessment equalizing exposure injuries flexible tubing health hospital humidity immersion pulmonary edema (IPE join DAN marine pathogens medical procedures medical risk assesment mucous membranes nasal steroids nasal newdivers nitrogen bubbles off-gassed operating theatre outgas pain plasters post dive preserve rebreather mask rebreathers risk areas saturation scissors scuba equipment scuba single use sinus infections strength tecnical diver thermal protection training trimix unified standards warmers water quality