Your Dive Computer: Tips and tricks - PART 2

Remember its limitations
Dive computers are wonderful at carrying out programmed mathematical computations, but they are blind to the many insights you may have before, during and between your dives. For example, your dive computer knows nothing about your personal health status, your level of physical fitness or your individual susceptibility to decompression stress. It also knows nothing about your thermal stress or physical efforts during or between dives.

The fact that many dive computers display water temperature might suggest that thermal stress is factored into the device’s algorithms. A water temperature reading, however, provides no useful information regarding thermal stress, since the diver carrying the device could be wearing anything from a bathing suit to a wetsuit without a hood to a cold-water drysuit with a hood, gloves and cold water undergarments.

More importantly, it is not yet possible to directly compute the impact of differences in thermal status during different parts of a dive, even if the computer was able to measure the diver’s core temperature and skin temperature in key spots. We do know that being warm (rather than cool or cold) during the compression and bottom phase of a dive promotes inert gas uptake (not optimal), and that being warm during the decompression phase promotes elimination (optimal). While impractical for the comfort-loving diver, decompression safety is optimized by being neutral or cool during the inert gas uptake-phase of descent and bottom time and warm during the inert gas elimination phase of ascent.

While the concept of thermal changes on decompression stress is clear, we are still years away from being able to quantify the real-world effects of these factors for dive-planning purposes. Similarly, while some computers are able to track gas consumption, we have much to learn before this information can be meaningfully incorporated into decompression models. Variations in air consumption can reflect differences in the depth of a dive or in the diver’s experience, level of anxiety or degree of physical exertion. The bottom line is that interpreting the precise physiological impact of the interactions among these diverse factors is exceedingly difficult, requiring thoughtful practice by divers.

Heed your computer’s readings
Divers need to pay attention to their dive computers if the information provided is to be of any use. Be aware that confirmation bias can promote risky behavior. “Getting away with” a risky exposure once, twice or even many times may eventually catch up with you. It may not truly be safe for you or for a partner who might have a higher degree of susceptibility to decompression stress. Those who wish to worry less about their exposure will have greater peace of mind if they choose a computer that employs an extremely conservative decompression model.
It is also important to pay attention to your dive computer.

 If you are diving with a group, do not forget that there can be considerable variability in the guidance provided by different computers or computers with different user selected settings. That means there is considerable benefit in diving with others who use a computer with a similar decompression model and settings, because if modest discrepancies arise, following the most conservative directive will likely not be terribly burdensome for the group. But if members of a group are using dive computers with substantially different models, and each diver wishes to follow his or her own device, it can lead to a breakdown in the buddy system.

Do not rely blindly on your computer
Although heeding your computer is important, do not take its advice unthinkingly. The same profile can sometimes be conducted without problem again and again, right up to the dive where it does not prove safe. Divers often try to blame a specific factor, such as dehydration, for the development of symptoms following one dive but not another. This approach is not productive. The range of variables in play during a dive are rarely identical, and there is a probabilistic element to decompression risk — that is, chance can play a role in the manifestation of DCS.

The best approach is to avoid the extremes of either fatalistic resignation or smug focus on a single supposed magic bullet. There are many, many small steps you can take to make any dive safer. The most important one is to stay within a reasonably conservative time, depth profile and to add safety stops to every dive. Other important steps are:
  • to minimize your exercise intensity and
  • avoid overheating during the gas-uptake phase of your dive,
  • to choose the right breathing gas,
  • to practice enough that you are able to perfectly control your buoyancy,
  • to remain well-rested and well-hydrated,
  • choose more conservative user-adjustable settings on the computer, and
  • to dive with a partner who has similar goals and follows similar practices.

 Adding small safety margins to each step can help to provide a comfortable security cushion. Dive computers are powerful tools, but sound knowledge of diving physiology, good physical conditioning and adherence to thoughtful practices offer the best  protection for divers.

Keep it with you
If you do develop DCS symptoms, you should keep your computer with you when you go for medical evaluation. Some facilities may have the ability to download or review your profile to aid in the evaluation of your case. The medical staff will surely appreciate seeing confirmation of your description of the events that precipitated your symptoms.

Categories

 2019
 2018
 2016
Accidents After anaesthesia Air Quality Air exchange centre Air hose failure Altitude changes Altitude sickness Ama divers Anaerobic Metabolism Annual renewal Apnea Apnoea Arterial gas embolism Arthroscopic surgery Aurel hygiene BCD Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bandaids Barbell back squat Bench press Blood flow Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath hold Breath-hold Breathing Gas Breathing Broken bones Bruising Buoyancy Burnshield CGASA CMAS CO2 Cabin pressure Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town Carbon dioxide Cardio health Cardiomyopathy Chamber Safety Chamber science Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Chemotherapy Chiropractic Citizen Conservation Cleaning products Coastalexcursion Cold Water Cold care Cold Compressed gas Conservation Contaminants Contaminated air Corals Courtactions Crohns disease Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN report DCI DCS Decompressions sickness DCS theories DCS DM training DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Deco dives Decompression Illness Decompression Sickness Decompression illsnes Decompression treatment Decompression Diaphragms Diseases Dive Chamber Dive Industry Dive Instruction Dive Instructor Dive Pros Dive Research Dive Training Dive Travel Dive accidents Dive buddies Dive computers Dive excursions Dive gear Dive health Dive medicines Dive medicine Dive operators Dive safety Dive staff Diveleader training Diveleaders Diver Profile Diver infliencers Divers Alert Diving Kids Diving Trauma Diving career Diving emergencies Diving guidelines Diving injuries Diving suspended Diving Dizziness Domestic Donation Dowels Dr Rob Schneider Drysuit diving Drysuit valves Drysuits EAPs EAP Ear pressure Ear wax Ears injuries Education Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equipment care Evacuations Evacuation Evaluations Exercise Exhaustion Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Failures Fatigue Faulty equipment Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Training First Aid kits Fish Fitness to dive Fitness Flying Francois Burman Free Student cover Free diving Free flow Freedive Training Freediver Freediving performance Gas Density Gas laws Gas mixes GasPerformance Gases Gastric bypass Gear Servicing Gordon Hiles HELP HIRA Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart rate Heart Heat stress Helium High temperatures Hip strength Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hypothermia Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Instinct Instruction Instructors Insurance Integrated Physiology International travel International Irritation Joint pain Kidneys Kids scubadiver Labour laws Learning to dive Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Low blood pressure Low pressure deterioration Low volume masks Lung function Lung injuries Lung surgery Lung MOD Maintenance Mammalian Dive Response Mammalian effect Marine Scientists Marine parks Marinelife Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Muscle pain Mycobacterium marinum Nausea Nautilus Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean pollution Open water divers Orbital implants Oronasal mask Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Phillipines Photography Pistons Planning Plastic Pneumonia Pneumothorax Pollution Pool Diving Preparation Prepared diver Press Release Professional rights Provider course Pulmanologist Pulmonary Bleb Punture wounds Purge RAID South Africa RCAP Radio communications Range of motion Rashes Recompression chamber Recompression treatment Recompression Recycle Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue training Resume diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management SABS 019 Safety Stop Safety Saturation Diving Save our seas Science Scuba Air Quality Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba health Scubalearners Sealife Shoulder strength Sideplank Signs and Symptoms Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Sodwana Bay South Africa Spinal pain Splits Squeezes Standars Step ups Stroke Sulawesi Supplemental oxygen Surgeries Surgery TRavel safety Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Transplants Travel tips Travel Tweezers Unconsciousness Underwater photographer Underwater pho Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasvagal Syncope Venting Volatile fuels Washout treatments Wastewater Water Weakness Weigang Xu West Papua Wetsuit fitting Wetsuits White balance Winter Woman in diving Work of Breathing Wound dressings Wreck dive Wreckdiving Youth diver abrasion air-cushioned alert diver altitude anemia antibiotics antiseptics bandages bent-over barbell rows body art breathing air calories burn cardiovascular checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver rescue diver training dive diving attraction doctors domestic travel dri-suits dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving gas bubble health hospital humidity immersion pulmonary edema (IPE join DAN knee longevity lower stress marine pathogens medical issues medical procedures medical risk assesment mental challenge micro-organisims minor illness mucous membranes nasal steroids nasal nematocysts newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive preserve prevention pulmunary barotrauma rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection training trimix unified standards vision impaired warmers water quality