Remember to Breathe
In basic open-water classes, divers are told "never to hold their breath" for fear of lung injuries due to the expansion of compressed gas during ascent. Further, students are told that the most dangerous part of the ascent is closest to the surface.
Why is this? What is the actual mechanism by which lungs are injured by expanding gas? Do they actually rip and tear? Since the lungs are surrounded by a fluid-filled sac, where does the expansion occur? Is there empty space between the lungs, the sac, and the rest of the body? Finally, why exactly would the last bit of the ascent be more dangerous, say, than covering the same vertical distance much deeper? Doesn't the ambient pressure change as much between 60 and 30 feet as it does between 30 feet and the surface?
Why is this? What is the actual mechanism by which lungs are injured by expanding gas? Do they actually rip and tear? Since the lungs are surrounded by a fluid-filled sac, where does the expansion occur? Is there empty space between the lungs, the sac, and the rest of the body? Finally, why exactly would the last bit of the ascent be more dangerous, say, than covering the same vertical distance much deeper? Doesn't the ambient pressure change as much between 60 and 30 feet as it does between 30 feet and the surface?
Lung expansion injuries can be the most dramatic and life-threatening emergencies in scuba diving. They are generally a result of lung overinflation due to pathological air trapping (lung disease), or breathholding during ascent. A good understanding of lung anatomy is essential to comprehending the associated risks. The main bronchi divide into smaller airways called bronchioles and continue to branch and reduce in size until they form the respiratory bronchioles, which terminate in the alveolar sacs.
The alveoli are the key functional unit of the respiratory system where gas exchange takes place. These fragile air sacs are surrounded by a delicate membrane only one- to two-cell layers thick and are encompassed by a network of tiny blood capillaries. Exposed to atmospheric pressures at sea level, our lungs are in a state of equilibrium as we inhale and exhale.
Slight ambient pressure changes occur every day in the atmosphere on account of weather or when we ascend and descend within the atmosphere (e.g., with climbing or flying). These changes quite small, however, and are adjusted quite inconspicuously with each breath we take. As such, we are typically unaware of them when when we are in an atmospheric air environment. The same is not true when we dive in water, however: For some perspective: The full range of pressure change experienced when flying to a cabin altitude of 8000 feet in a commercial airline is experienced during a descent to merely 2 meters of depth. This presents two major problems to our lungs in terms of pressure-volume changes: (1) It possible to get a lung squeeze is we were to dive very deep on breath-hold; and (2) conversely, we can sustain a lung over-pressure injury if we do not exhale adequately (i.e., breathe regularly) during ascent while / after breathing from a compressed gas source under-water (e.g., SCUBA). Fortunately, scuba regulators deliver breathing gas at the ambient pressure to a diver - with every breath they take. Therefore, as long as a diver does not hold their breath, the adjustments avoid a lung-over pressure injury unless the ascent is very, very rapid. If they don't, there are various potential consequences:
This forces gas into one of three locations:
Probably gas enters blood vessels at "corners" of the lung - for example, between the lung and the mediastinum, where pressure differentials may cause disruption (tearing), allowing extra alveolar gas to enter. It is important to note that a breathhold ascent from a depth as shallow as four feet of sea water(fsw)/1.2 meters (msw) may be sufficient to tear alveoli sacs, causing lung tear and one of these three ailments.
For a fixed quantity of gas, the relationship between its volume and the external pressure is provided by Boyle's law. In essence, British physicist/chemist Robert Boyle discovered that at a constant temperature and mass, the volume of a gas is inversely proportional to the pressure exerted on that gas. When the pressure is doubled, the volume is reduced to one-half of the original volume. Conversely, when the pressure is reduced by one-half, the volume doubles. For a diver at 15 fsw/4.6 msw, the total pressure acting on his body is 1.5 atmospheres (one atmosphere at the surface, plus an additional 0.5 atmospheres exerted by the water column). A sudden ascent to the surface would therefore result in a 30 percent pressure reduction, and assuming a compliant chest wall, a volume increase of 50 percent. Lung injury may result.
Actual volume changes may be less than this because of the effect of the surrounding chest wall to provide some rigidity and protection for the lung. However, if the same vertical change occurred from a depth of 66 fsw/20 msw, the 0.5 atmosphere of depth change would only result in a 16 percent reduction in pressure and a 20 percent increase in lung volume, and would be less likely to cause lung injury. Boyle's law thus explains why abrupt changes in depth while in shallow water can be far more hazardous than equivalent changes of depth in deep water.
The alveoli are the key functional unit of the respiratory system where gas exchange takes place. These fragile air sacs are surrounded by a delicate membrane only one- to two-cell layers thick and are encompassed by a network of tiny blood capillaries. Exposed to atmospheric pressures at sea level, our lungs are in a state of equilibrium as we inhale and exhale.
Slight ambient pressure changes occur every day in the atmosphere on account of weather or when we ascend and descend within the atmosphere (e.g., with climbing or flying). These changes quite small, however, and are adjusted quite inconspicuously with each breath we take. As such, we are typically unaware of them when when we are in an atmospheric air environment. The same is not true when we dive in water, however: For some perspective: The full range of pressure change experienced when flying to a cabin altitude of 8000 feet in a commercial airline is experienced during a descent to merely 2 meters of depth. This presents two major problems to our lungs in terms of pressure-volume changes: (1) It possible to get a lung squeeze is we were to dive very deep on breath-hold; and (2) conversely, we can sustain a lung over-pressure injury if we do not exhale adequately (i.e., breathe regularly) during ascent while / after breathing from a compressed gas source under-water (e.g., SCUBA). Fortunately, scuba regulators deliver breathing gas at the ambient pressure to a diver - with every breath they take. Therefore, as long as a diver does not hold their breath, the adjustments avoid a lung-over pressure injury unless the ascent is very, very rapid. If they don't, there are various potential consequences:
This forces gas into one of three locations:
- the space within the chest cavity (pleural space), a condition known as pneumothorax;
- the tissue planes within the lung itself (interstitial space), from where it may travel into the space around the heart, the tissues of the neck and the larynx (mediastinal emphysema); or
- the blood.
Probably gas enters blood vessels at "corners" of the lung - for example, between the lung and the mediastinum, where pressure differentials may cause disruption (tearing), allowing extra alveolar gas to enter. It is important to note that a breathhold ascent from a depth as shallow as four feet of sea water(fsw)/1.2 meters (msw) may be sufficient to tear alveoli sacs, causing lung tear and one of these three ailments.
For a fixed quantity of gas, the relationship between its volume and the external pressure is provided by Boyle's law. In essence, British physicist/chemist Robert Boyle discovered that at a constant temperature and mass, the volume of a gas is inversely proportional to the pressure exerted on that gas. When the pressure is doubled, the volume is reduced to one-half of the original volume. Conversely, when the pressure is reduced by one-half, the volume doubles. For a diver at 15 fsw/4.6 msw, the total pressure acting on his body is 1.5 atmospheres (one atmosphere at the surface, plus an additional 0.5 atmospheres exerted by the water column). A sudden ascent to the surface would therefore result in a 30 percent pressure reduction, and assuming a compliant chest wall, a volume increase of 50 percent. Lung injury may result.
Actual volume changes may be less than this because of the effect of the surrounding chest wall to provide some rigidity and protection for the lung. However, if the same vertical change occurred from a depth of 66 fsw/20 msw, the 0.5 atmosphere of depth change would only result in a 16 percent reduction in pressure and a 20 percent increase in lung volume, and would be less likely to cause lung injury. Boyle's law thus explains why abrupt changes in depth while in shallow water can be far more hazardous than equivalent changes of depth in deep water.
Posted in Dive Safety FAQ
Categories
2024
February
March
April
May
October
My name is Rosanne… DAN was there for me?My name is Pam… DAN was there for me?My name is Nadia… DAN was there for me?My name is Morgan… DAN was there for me?My name is Mark… DAN was there for me?My name is Julika… DAN was there for me?My name is James Lewis… DAN was there for me?My name is Jack… DAN was there for me?My name is Mrs. Du Toit… DAN was there for me?My name is Sean… DAN was there for me?My name is Clayton… DAN was there for me?My name is Claire… DAN was there for me?My name is Lauren… DAN was there for me?My name is Amos… DAN was there for me?My name is Kelly… DAN was there for me?Get to Know DAN Instructor: Mauro JijeGet to know DAN Instructor: Sinda da GraçaGet to know DAN Instructor: JP BarnardGet to know DAN instructor: Gregory DriesselGet to know DAN instructor Trainer: Christo van JaarsveldGet to Know DAN Instructor: Beto Vambiane
November
Get to know DAN Instructor: Dylan BowlesGet to know DAN instructor: Ryan CapazorioGet to know DAN Instructor: Tyrone LubbeGet to know DAN Instructor: Caitlyn MonahanScience Saves SharksSafety AngelsDiving Anilao with Adam SokolskiUnderstanding Dive Equipment RegulationsDiving With A PFOUnderwater NavigationFinding My PassionDiving Deep with DSLRDebunking Freediving MythsCryptic FishImmersion Pulmonary OedemaSwimmer's EarMEMBER PROFILE: RAY DALIOAdventure Auntie: Yvette OosthuizenClean Our OceansWhat to Look for in a Dive Boat
2023
January
March
Terrific Freedive ModeKaboom!....The Big Oxygen Safety IssueScuba Nudi ClothingThe Benefits of Being BaldDive into Freedive InstructionCape Marine Research and Diver DevelopmentThe Inhaca Ocean Alliance.“LIGHTS, Film, Action!”Demo DiversSpecial Forces DiverWhat Dive Computers Don\'t Know | PART 2Toughing It Out Is Dangerous
April
July
August
2 Comments
Error in paragraph 5. looks like something was left out. Last part of paragraph does not make sense as it stands.