Taravana: Fact or Falacy?

A unique form of decompression illness associated with breath-hold diving is discussed, including research and recommendations.
Decompression illness (DCI) is mainly associated with compressed gas diving or caisson work. However, since 1965, diving researchers have become increasingly aware of a curious cluster of neurological symptoms associated with breath-hold diving, but not attributed to hypoxia of ascent [1,2]. The condition, known as “taravana” amongst pearl divers of the Tuamotus (a chain of islands and atolls in French Polynesia), has increasingly become accepted as a unique form of DCI [3]. The typical presentation is a rapid onset of partial paralysis, visual problems, difficulties with hearing or speech [3], and even cases of loss of consciousness and death [4]. Although scans have confirmed that it is an injury to the brain [5,8], the underlying mechanism is not completely understood. For instance, it is not clear whether it is primarily the result of arterial gas embolism [9,10], or due to the formation of inert gas bubbles within the brain itself [4,11]. Either one or both of these mechanisms may be involved in developing taravana; conceivably, it might also be something much more complicated than the usual dichotomous understanding [12].
Bubble detection methods have been used quite widely to assess decompression stress. Similarly, they have been employed to predict the chances of developing decompression disorders following decompression. Of the various available methods, precordial Doppler and cardiac ultrasound are the best known. Doppler detections have confirmed the presence of bubbles in breath-hold divers [11]. However, Doppler bubblefindings have been somewhat at odds with the severity of symptoms that have been reported. Also, recent advances in ultrasound technology have made it more feasible to use cardiac ultrasound to better quantify the risk.
In 2013, the author of this article, together with a team of DAN Europe researchers, was able to show significant intracardiac bubbles following breath-hold diving using a two-dimensional cardiac ultrasound. Using conventional cardiac ultrasound methods and an established scoring method [13], significant bubbles were observed in a group of spearfishermen after performing repetitive breath-hold dives under laboratory conditions. Based on this discovery, the team decided to employ a well-recognised decompression algorithm to determine if it would be able to predict the accumulation of inert gas during breath-hold diving excursions associated with detectable bubbles. If so, and ifpost-diving bubbles could be predicted mathematically, this might suggest that the risks for developing taravana might be minimised by following the same principles used for safe decompression after compressed gas diving.
With this objective in mind, various repetitive breath-hold dive profiles were recorded for depth, dive time, bottom time, descent and ascent rates and gradient factors1 (GF), all calculated through the use of the Bühlmann ZH-16 Model C[13,14]. However, most of the profiles had very low GF,typically 33% or less of the maximum value. This approach seems unable to predict the appearance of inert gas bubblesfollowing breath-hold diving. Therefore, there is reason to suspect additional predisposing mechanisms. Something else must be involved that makes breath-hold divers uniquely vulnerable compared to the inert gas dynamics associated with compressed gas diving.
In evaluating various spearfishing divers, the physiology of breath-hold diving, and the specific practices associated with taravana, a new theory has emerged. It would seem that it may be due to the following factors, namely the pooling of blood in the lungs during the dive with an associated additional uptake of inert gas from the lungs to the blood. This would be followed by a rapid shift of blood upon returning to the surface that might explain the level of bubbles observed in the heart even in the absence of significantly elevated tissue inert gas saturations as would be predicted by usual decompression algorithms.
Based on this research, the following recommendations have been made:
  • Breath-hold diving has become increasingly popular in recent years. Those involved in the sport push towards ever-increasing depths (particularly those who engage in either competitive breath-hold diving or spearfishing). As a result, the incidence of taravana is expected to increase, unless additional precautionary measures are introduced as normative practice.
  • Even though the risk for developing taravana cannot be predicted using traditional decompression modelling, this does not mean that recommendations cannot be made. In as far back as 1965 a “surface recovery time” of at least three times the total breath-hold dive time wasrecommended by the United States Navy [15]. Therefore, in lieu of more specific advice, it is also recommended thatalthough the exact cause may be elusive to some extent,the manifestations of taravana are consistent with DCI. The same first aid and treatment measures are therefore recommended: 100% oxygen first aid and prompt referral for recompression for neurological symptoms following deep, repetitive breath-hold diving.
The main conclusions of this research are threefold:
  • Significant intracardiac bubbling has been observed following repetitive breath-hold diving. This supports the idea of a bubble-related cause of taravana.
  • Current decompression models are unsuitable for predicting breath-hold related bubbles and, consequently, the risk of developing taravana.
  • It is noteworthy that the experimental dive profiles used for the study, which produced bubbling, are moreconservative than those used regularly in the open ocean. Until we find better predictors of taravana, we strongly recommend that all divers follow the empirical precautionary principle of spending at least three times the duration of their dive at the surface in order to recover.
Research is ongoing. Breath-hold divers who are interested in participating in this research are welcome to [email protected]
  • Gradient factors (GF) are an expression of inert gas supersaturation of theoretical tissues or compartments within the body during ascent and surfacing. They offer a mathematically manageable method of determining which of these theoretical compartments appear most vulnerable to bubble formation, for example, the leading tissues or compartments. During the original table development, and based on actual testing, maximum GFs were determined for each of the theoretical tissues which have been expressed as maximum values (or M-values) of inert gas saturation for the 16 “tissues” considered by the Bühlmann ZH-16 Model C.
  • Cross, E.R. 1965. Physiology of Breath-Hold Diving and the Ama of Japan. In: Rahn H, Yokoyama T. (eds.). Taravana diving syndrome in the Tuamotu diver. Washington, DC: National Academy of Sciences Research Council.
  • Paulev, P. 1965. Decompression sickness following repeated breath-hold dives. J Appl Physiol (1985), 20(5): 1028-31.
  • Lemaitre, F., Fahlman, A., Gardette, B. & Kohshi, K. 2009. Decompression sickness in breath-hold divers: a review. J Sports Sci, 27(14):1519-1534.
  • Moon, R.E. & Gray, L.L. 2010. Breath-hold diving and cerebral decompression illness. Undersea Hyperb Med, 37(1):1-5.
  • Kohshi, K., Katoh, T., Abe, H. & Okudera, T. 2000. Neurological accidents caused by repetitive breath-hold dives: two case reports. J Neurol Sci, 178(1):66-69.
  • Kohshi, K., Kinoshita, Y., Abe, H. & Okudera, T. 1998. Multiple cerebral infarction in Japanese breath-hold divers: two case reports. Mt Sinai J Med, 65(4):280-283.
  • Kohshi, K., Wong, R.M., Abe, H., Katoh, T., Okudera, T. & Mano, Y. 2005. Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med, 32(1):11-20.
  • Kohshi, K., Wong, R.M., Higashi, T., Katoh, T. & Mano, Y. 2005. Acute decompression illness following hyperbaric exposure: clinical features of central nervous system involvement. J UOEH, 27(3): 249-261.
  • Lindholm, P. & Lundgren, C.E. 2009. The physiology and pathophysiology of human breath-hold diving. J Appl Physiol (1985), 106(1):284-292.
  • Liner, M.H. & Andersson, J.P. 2010. Suspected arterial gas embolism after glossopharyngeal insufflation in a breath-hold diver. Aviat Space Environ Med, 81(1):74-76.
  • Prediletto, R., Fornai, E., Catapano, G., Carli, C., Garbella, E., Passera, M., Cialoni, D., Bedini, R. & L’Abbate, A. 2009. Time course of carbon monoxide transfer factor after breath-hold diving. Undersea Hyperb Med, 36(2):93-101.
  • Thom, S.R., Bennett, M, & Banham, N.D., Chin, W., Blake, D.F., Rosen, A., Pollock, N.W., Madden, D., Barak, O., Marroni, A., Balestra, C., Germonpré,P., Pieri, M., Cialoni, D., Le, P.J., Logue, C., Lambert, D., Hardy, K.R., Sward, D., Yang, M. Bhopale, V.B. & Dujic, Z. 2015. Association of microparticles and neutrophil activation with decompression sickness. J Appl Physiol (1985), 119(5):427-434.
  • Blogg, S.L., Gennser, M., Mollerlokken, A. & Brubakk, A.O. Ultrasound detection of vascular decompression bubbles: the influence of newtechnology and considerations on bubble load. Diving Hyperb Med 2014, 44(1):35-44.
  • Germonpré, P., Papadopoulou, V., Hemelryck, W., Obied, G., Lafère, P., Eckersley, R.J. Tang, M.X. & Balestra, C. 2014. The use of portable 2D echocardiography and ‘frame-based’ bubble counting as a tool to evaluate diving decompression stress. Diving Hyperb Med, 44(1):5-13.
  • Lanphier, E.H. 1965. Application of decompression tables to repeated breath-hold dives. Washington, DC: National Academy of Sciences, National Research Council.


After anaesthesia Air Quality Air exchange centre Air hose failure Altitude changes Altitude sickness Ama divers Anaerobic Metabolism Annual renewal Apnea Apnoea Arterial gas embolism Arthroscopic surgery Aurel hygiene BCD Badages Bag valve mask Bandaids Barbell back squat Bench press Blood flow Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath hold Breath-hold Breathing Gas Breathing Bruising Buoyancy Burnshield CGASA CMAS CO2 Cabin pressure Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Carbon dioxide Cardio health Cardiomyopathy Chamber Safety Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Chemotherapy Cleaning products Coastalexcursion Cold Water Cold care Cold Compressed gas Conservation Contaminants Contaminated air Corals Courtactions Crohns disease Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN report DCI DCS Decompressions sickness DCS DM training DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Deco dives Decompression Illness Decompression Sickness Decompression illsnes Decompression treatment Decompression Diaphragms Diseases Dive Chamber Dive Industry Dive Instruction Dive Instructor Dive Pros Dive Research Dive Training Dive accidents Dive buddies Dive computers Dive gear Dive health Dive medicines Dive medicine Dive safety Dive staff Diveleader training Diveleaders Diver Profile Divers Alert Diving Kids Diving career Diving emergencies Diving guidelines Diving injuries Diving suspended Diving Domestic Donation Dr Rob Schneider Drysuit diving Drysuit valves Drysuits EAPs EAP Ear pressure Ear wax Ears injuries Education Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equipment care Evacuation Exercise Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Failures Fatigue Faulty equipment Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Training First Aid kits Fish Fitness Flying Francois Burman Free diving Free flow Freedive Training Freediver Freediving performance Gas Density Gas laws Gas mixes GasPerformance Gases Gastric bypass Gear Servicing Gordon Hiles HELP HIRA Haemorhoid treatment Hazard Description Hazardous Marine life Health practitioner Heart Health Heart Helium High temperatures Hot Humans Hydrate Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hypothermia Immine systems In Water Recompression Indemnity form Indian Ocean Inert gas Infections Instinct Instructors Insurance Integrated Physiology International travel International Irritation Kidneys Kids scubadiver Labour laws Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Low blood pressure Low pressure deterioration Low volume masks Lung function Lung injuries Lung MOD Maintenance Mammalian Dive Response Mammalian effect Master scuba diver Maximum operating depth Medical Q Medical questionaire Medical statement Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Muscle pain Mycobacterium marinum Nautilus Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean pollution Orbital implants Oronasal mask Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Photography Pistons Planning Plastic Pneumothorax Pollution Pool Diving Preparation Prepared diver Press Release Professional rights Provider course Pulmanologist Pulmonary Bleb Purge RAID South Africa RCAP Radio communications Rashes Recompression chamber Recompression Recycle Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue training Resume diving Risk Assessments Risk assesments Risk elements Risk management SABS 019 Safety Stop Safety Saturation Diving Save our seas Science Scuba Air Quality Scuba Injury Scuba children Scuba dive Scuba health Scubalearners Sealife Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Sodwana Bay Splits Squeezes Standars Supplemental oxygen Surgeries Surgery Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Transplants Travel tips Travel Tweezers Unconsciousness Underwater photographer Underwater pho Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasvagal Syncope Venting Volatile fuels Washout treatments Wastewater Water Weakness Wetsuit fitting White balance Winter Woman in diving Work of Breathing Wound dressings Wreck dive Wreckdiving Youth diver abrasion air-cushioned alert diver altitude anemia antibiotics antiseptics bandages bent-over barbell rows body art breathing air calories burn cardiovascular checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver rescue diver training dive diving attraction doctors domestic travel dri-suits dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalizing exposure injuries eyes fEMAL DIVERS fire rescue flexible tubing frediving gas bubble health hospital humidity immersion pulmonary edema (IPE join DAN knee longevity lower stress marine pathogens medical issues medical procedures medical risk assesment mental challenge minor illness mucous membranes nasal steroids nasal nematocysts newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive preserve prevention rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection training trimix unified standards vision impaired warmers water quality