How the dive Reflex protects the brain and heart

What is the mammalian dive reflex?
The mammalian diving response, or "dive reflex," is the way our body automatically prioritizes blood delivery to the brain and heart when we hold our breath underwater. When your head is underwater, you are using up the oxygen in your blood and not replacing it by breathing, a condition known as hypoxia. The brain and the heart are exceptionally sensitive to hypoxia, whereas other parts of our body, such as our arms and our legs, can tolerate hypoxia much more easily.
Immersing your face in cold water triggers the trigeminal nerve (also called the fifth cranial nerve) in your face and sends signals to the brain. The brain then activates the vagus nerve (or 10th cranial nerve), which is part of the autonomic nervous system. The autonomic nervous system helps control things such as our heart rate and breathing without us having to think about it. The vagus nerve slows down the rate at which our heart beats; when it beats more slowly, it doesn't need as much oxygen to function.
Simply being immersed in water creates a hydrostatic pressure effect on the body that essentially squeezes some of the blood from our extremities back toward our heart. The vagus nerve also causes certain blood vessels to constrict (called vasoconstriction), subsequently pushing even more blood from our extremities back toward our heart and brain. Immersion of your face in cold water or breath holding can cause these effects, but they are much more pronounced if you hold your breath while also immersing your face in cold water.
Interestingly, there is also a response by our spleen to breath holding underwater. Red blood cells carry oxygen in our blood to our tissues. Extra red blood cells are stored in the spleen and can be added into the blood circulation during times of stress — such as hypoxia, bleeding and strenuous exercise — by the action of splenic contracture. Extra red blood cells allow more oxygen to be carried to where we need it. Some populations of indigenous breath-hold divers, such as the Bajau of Southeast Asia, have developed larger spleens and thus a larger reservoir of red blood cells and better tolerance to hypoxia. Conversely, we don't see this effect in people who have had their spleen removed.
All diving mammals experience these dive reflexes, although in humans it is less intense than in diving animals. Elephant seals, for example, can dive to more than 5,000 feet holding their breath and during migration can spend more than 80 percent of the time underwater. Researchers tracked an elephant seal that breath held to more than 4,000 feet for two hours.
Whether you fall into the water by accident or you are holding your breath for competition, your brain and heart need oxygen. While we may not be as adept as the elephant seals, you can see how the dive reflex helps to ensure our brain and heart get the oxygen they need when we hold our breath underwater.
— Kaighley Brett, M.D.
The mammalian diving response, or "dive reflex," is the way our body automatically prioritizes blood delivery to the brain and heart when we hold our breath underwater. When your head is underwater, you are using up the oxygen in your blood and not replacing it by breathing, a condition known as hypoxia. The brain and the heart are exceptionally sensitive to hypoxia, whereas other parts of our body, such as our arms and our legs, can tolerate hypoxia much more easily.
Immersing your face in cold water triggers the trigeminal nerve (also called the fifth cranial nerve) in your face and sends signals to the brain. The brain then activates the vagus nerve (or 10th cranial nerve), which is part of the autonomic nervous system. The autonomic nervous system helps control things such as our heart rate and breathing without us having to think about it. The vagus nerve slows down the rate at which our heart beats; when it beats more slowly, it doesn't need as much oxygen to function.
Simply being immersed in water creates a hydrostatic pressure effect on the body that essentially squeezes some of the blood from our extremities back toward our heart. The vagus nerve also causes certain blood vessels to constrict (called vasoconstriction), subsequently pushing even more blood from our extremities back toward our heart and brain. Immersion of your face in cold water or breath holding can cause these effects, but they are much more pronounced if you hold your breath while also immersing your face in cold water.
Interestingly, there is also a response by our spleen to breath holding underwater. Red blood cells carry oxygen in our blood to our tissues. Extra red blood cells are stored in the spleen and can be added into the blood circulation during times of stress — such as hypoxia, bleeding and strenuous exercise — by the action of splenic contracture. Extra red blood cells allow more oxygen to be carried to where we need it. Some populations of indigenous breath-hold divers, such as the Bajau of Southeast Asia, have developed larger spleens and thus a larger reservoir of red blood cells and better tolerance to hypoxia. Conversely, we don't see this effect in people who have had their spleen removed.
All diving mammals experience these dive reflexes, although in humans it is less intense than in diving animals. Elephant seals, for example, can dive to more than 5,000 feet holding their breath and during migration can spend more than 80 percent of the time underwater. Researchers tracked an elephant seal that breath held to more than 4,000 feet for two hours.
Whether you fall into the water by accident or you are holding your breath for competition, your brain and heart need oxygen. While we may not be as adept as the elephant seals, you can see how the dive reflex helps to ensure our brain and heart get the oxygen they need when we hold our breath underwater.
— Kaighley Brett, M.D.
Posted in Alert Diver Summer Editions
Tagged with Mammalian effect, dive reflex, Heart, Brain, Instinct, Vagus nerve, Oxygen supply, Hydrostatic pressure
Tagged with Mammalian effect, dive reflex, Heart, Brain, Instinct, Vagus nerve, Oxygen supply, Hydrostatic pressure
Categories
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March